Evidence that the anticarcinogenic effect of caffeic acid phenethyl ester in the resistant hepatocyte model involves modifications of cytochrome P450.
نویسندگان
چکیده
Caffeic acid phenethyl ester (CAPE), a natural component of propolis, shows anticarcinogenic properties in the modified resistant hepatocyte model when administered before initiation or promotion of hepatocarcinogenesis process; however, information about the mechanism underlying this chemoprotection is limited. The aim of this work was to characterize the effect of CAPE on cytochrome P450 (CYP), which is involved in diethylnitrosamine (DEN) metabolism during the initiation stage of chemical hepatocarcinogenesis. Male Fischer-344 rats were treated as in the modified resistant hepatocyte model. Liver samples were obtained at four different times: at 12 h after pretreatment with CAPE and at 12 and 24 h and 25 days after DEN administration. Liver damage was determined by histology with hematoxylin and eosin, measurement of total CYP levels and enzyme activity, and gamma-glutamyl transpeptidase-positive (GGT+) staining of hepatocyte foci. CAPE administration prevented DEN-induced necrosis at 24 h. It also decreased O-dealkylation of 7-ethoxy-resorufin (EROD), O-dealkylation of 7-methoxyresorufin (MROD), and 7-pentoxy-resorufin activities at 12 h after its administration and EROD and MROD activities at 12 h after administration of DEN. CAPE treatment decreased GGT+ foci by 59% on day 25. Our results suggest that CAPE modifies the enzymatic activity of CYP isoforms involved in the activation of DEN, such as CYP1A1/2 and CYP2B1/2. These findings describe an alternative mechanism for understanding the ability of CAPE to protect against chemical hepatocarcinogenesis.
منابع مشابه
Protective Effect of Caffeic Acid Phenethyl Ester (CAPE) on Amiodarone-Induced Pulmonary Fibrosis in Rat
Treatment with amiodarone, a commonly prescribed antidysrhythmic agent, is associated with pulmonary fibrosis (PF) which is a commonly progressive and untreatable dieases. Caffeic acid phenethyl ester (CAPE) is a phenolic antioxidant and an active anti-inflammatory, anticancer, antimicrobial and antioxidant component of propolis (bee glue; a resinous hive product collected by honey bees). In th...
متن کاملProtective Effect of Caffeic Acid Phenethyl Ester (CAPE) on Amiodarone-Induced Pulmonary Fibrosis in Rat
Treatment with amiodarone, a commonly prescribed antidysrhythmic agent, is associated with pulmonary fibrosis (PF) which is a commonly progressive and untreatable dieases. Caffeic acid phenethyl ester (CAPE) is a phenolic antioxidant and an active anti-inflammatory, anticancer, antimicrobial and antioxidant component of propolis (bee glue; a resinous hive product collected by honey bees). In th...
متن کاملCaffeic Acid Phenethyl Ester With Mesenchymal Stem Cells Improves Behavioral and Histopathological Changes in the Rat Model of Parkinson Disease
Introduction: Parkinson disease (PD) results from the destruction of dopaminergic neurons in the brain. This study aimed to investigate the protective effects of natural antioxidants such as caffeic acid phenethyl ester (CAPE) to maintain these neurons. Methods: CAPE is one of the main ingredients of propolis. Intranasal administration of 1-methyl-4-phenyl-2;3;4;6-tetrahydropyridine (MPTP) was...
متن کاملNeuroprotective effects of propolis and caffeic acid phenethyl ester (CAPE) on the radiation-injured brain tissue (Neuroprotective effects of propolis and CAPE)
Background: Our purpose was to investigate propolis and its component caffeic acid phenethyl ester (CAPE) for their antioxidant effects on the brain tissue of rats exposed to ionizing radiation (IR). Materials and Methods: Fifty-four male albino Sprague-Dawley rats, divided into six groups, were designed as normal control group, cranial irradiation of 5 Gray alone, irradiation plus CAPE, irradi...
متن کاملEvaluation of the Effects of Caffeic Acid Phenethyl Ester on Prostaglandin E2 and Two Key Cytokines Involved in Bleomycin-induced Pulmonary Fibrosis
Objective(s): Pulmonary fibrosis (PF) is the most common outcome of a collection of diverse lung disorders known as interstitial lung diseases. It is proposed that alterations in the levels of fibrogenic mediators and the profibrotic/antifibrotic imbalance play a substantial role in the progression of PF in animal models and possibly in humans. Caffeic acid phenethyl ester (CAPE), an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 104 1 شماره
صفحات -
تاریخ انتشار 2008